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Increasing targeting scope of adenosine base
editors in mouse and rat embryos through
fusion of TadA deaminase with Cas9 variants

Dear Editor,

The clustered regularly interspaced short palindromic repeat
(CRISPR) system has been widely adapted to genome
editing to either introduce or correct genetic mutations
(Wang et al., 2016). However, due to competition with the
dominant non-homologous end-joining (NHEJ) pathway,
precise genome modifications through Cas9-stimulated
homologous recombination (HR) is inefficient. Through
fusion of cytidine deaminases, APOBEC1 (apolipoprotein B
editing complex 1) or AID (activation-induced deaminase),
with Cas9 variants, several groups have developed the
cytidine base editor (BE) systems (Komor et al., 2016; Li
et al., 2018; Nishida et al., 2016). The BE system achieves
programmable conversion of C•G base pairs to T•A without
double-stranded DNA cleavage (Zhou et al., 2017). More
recently, adenine base editors (ABEs), which efficiently
convert A•T base pairs to G•C in genomic DNA, have been
developed via fusion of an engineered tRNA adenosine
deaminase (ecTadA from Escherichia coli) with nCas9
(Gaudelli et al., 2017). The ABE system has quickly been
adapted to generate disease models and correction of
genetic disease in mice (Ryu et al., 2017; Liu et al., 2018).
However, whether the editing efficiency and the targeting
scope of ABE could be improved is largely unexplored. In
this study, we describe the efficient generation of base-edi-
ted mice and rats modeling human diseases through ABEs
with highest efficiency up to 100%. We also demonstrate an
increase of ABE activity through injection of chemically
modified tracrRNA and crRNA in mouse zygotes, and the
expansion of editing scope by fusion of an ecTadA mutant to
SaCas9n-KKH and Cas9n-VQR variants in both cells and
embryos. Our study suggests that the ABE system is a
powerful and convenient tool to introduce precise base
conversions in rodents.

To test the ABE efficiency in embryos, we injected ABE
mRNA (Fig. 1A) together with sgRNA targeting the TATA box
of the Hbb-bs gene, into C57BL6 strain mouse zygotes
(Fig. S1A and Table S1). Overlapping A/G peaks in the tar-
get sites were identified in 14/27 of F0 mice as determined
by the chromatograms of Sanger sequencing (Figs. 2F and
S1B). Further analysis by deep sequencing revealed allelic

frequencies from 6%–71% among the founders (Fig. S1C).
In individual allele, the editing window was extended from
position A2–A9 in mouse embryos, which is broader than the
window spanning position A4–A7 observed in mammalian
cell lines (Gaudelli et al., 2017) (Fig. S1B and S1C). These
data demonstrate that ABE is efficient to generate point
mutant mice and its mutation window expands in embryos.

Next, we tested the capability of ABE to precisely mutate
A:T pairs for disrupting the stop codon of the gene encoding
the fumarylacetoacetate hydrolase (Fah) (Fig. 1B), whose
mutations cause hereditary tyrosinemia type I (HTI) in
humans. We observed high A>G conversion efficiency
(39/47) among F0 mice with allelic frequencies varying from
7%–99% as determined by deep sequencing (Figs. 1B, 1C,
2F and S2A). Increasing the sgRNA concentration from
50 ng/µL to 100 ng/µL results in 100% (13/13) point mutation
rate in F0 mice (Figs. 2F and S2B). Since disruption of the
stop codon usually affects mRNA stability and protein
expression (Frischmeyer et al., 2002), the Fah mRNA and
protein levels were dramatically impaired (Fig. S2C and
S2D). Through immunohistochemistry analysis of the liver
tissue from founder F0–F32, Fah protein expression was
almost undetectable (Fig. 1D) suggesting this founder was a
homozygote (Fig. 1B and 1C). To investigate germline
transmission efficiency, founder mice were crossed with wild
type or with other founders. We observed high germline
transmission efficiency (Fig. S3A and S3B). In homozygous
F1 mice, the expression of Fah mRNA and protein was lost
(Fig. S3C–E). After withdrawal of the 2-(2-nitro-4-trifluo-
romethylbenzoyl)-1,3-cyclohexanedione (NTBC) treatment,
the phenotypes of Fah mutant homozygotes were similar to
previous HTI model, including loss of body weight and per-
turbation of serum biomarkers (Shao et al., 2018) (Fig. S3F
and S3G). As mutations that generate premature stop
codons are common drivers in various genetic diseases
(Keeling et al., 2014), ABE has a promising potential for
readthrough of premature stop codons in certain genetic
diseases as demonstrated in the mouse DMD model (Ryu
et al., 2017).

Previous study demonstrated that 2’-O-methyl-3’-phos-
phorothioate (MS) modification on each ends of RNA can
increase its stability, thus enhancing the Cas9 genome
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editing efficiency (Hendel et al., 2015). To explore whether
MS modification on RNA also increases ABE activity, MS
modified crRNAs and tracrRNAs were directly compared
with in vitro transcribed sgRNAs. Indeed, in all three targets
tested, the ABE editing efficiencies were higher when
injected with MS modified crRNAs and tracrRNAs (Figs. 1E
and S4). Moreover, the mutation efficiencies in individual
mice were also increased in the group that received chem-
ically modified RNAs (Fig. S4A–D). It suggests that
increasing of sgRNA stability is an efficient strategy to
increase ABE induced editing in embryos.

To investigate the activity of ABE in rats, we aimed to
target the acid alpha-glucosidase (Gaa) gene to mutate
aspartic acid (Asp) at codon 645 in exon 13, which is a
mutation identified in glycogen storage disease type II
(GSDII; Pompe disease) patients (Kroos et al., 2004)
(Fig. 1F). GSDII is a fatal disorder characterized by pro-
gressive loss of skeletal and/or heart muscle function. San-
ger sequencing data suggested that 85% (28/33) of rats
carried single or multiple A>G substitutions between position
A3–A7 in the target leading to I646V or D645G mutations (A3

is a synonymous mutation) (Figs. 1F, 1G and 2F). After deep
sequencing of all founders, the editing frequency in individ-
ual rats ranged from 26%–100% (Fig. S5A). The founders
which had higher mutation rates showed significantly
reduced Gaa activity (Fig. S5B). To analyze the phenotype of
the Pompe disease rat model, we crossed two pairs of
founders and obtained two Gaa mutant rat strains, I646Vand

D645G/I646V with an overall germline transmission effi-
ciency of 92% (12/13) (Fig. S5C). In D645G/I646V homozy-
gous rats, Gaa enzyme activity was 0.2-0.4 nmol/h/mg which
is 1.2%–2.5% of that in wild-type controls (Fig. S5D) and is
similar to the enzyme activity determined in D645 mutant
patients (Kroos et al., 2004). However, in I646V rats, Gaa
activity was mildly reduced, suggesting that the 646 site might
not be a critical site for Gaa since no point mutation at this site
has been reported among 558 known mutations in patients
(Pompe Mutatiedatabase http://cluster15.erasmusmc.nl/klgn/
pompe/mutations.html). Gaa mutation causes abnormal
accumulation of large lysosomes filled with glycogen in mul-
tiple tissues which lead to heart failure and skeletal muscle
weakness depending on the severity caused by the mutation.
Using PAS staining of heart, tibialis anterior and rectus
femoris cryo-sections from 3 week-old Gaa mutant rats, we
found an accumulation of PAS-positive vacuoles in all the
tested tissues in D645G/I646V rats (Figs. 1H and S5E).
These data suggest the successful generation of a Pompe
disease rat model.

The PAM restriction of SpCas9-based ABE limits the
number of potential targets. To expand the targeting scope of
ABE, we fused an ecTadA variant with SaCas9n-KKH (PAM:
NNNRRT) (Kleinstiver et al., 2015a) or Cas9n-VQR (PAM:
NGA) (Kleinstiver et al., 2015b) to generate SaKKH-ABE
and VQR-ABE respectively (Fig. 2A). To investigate the
editing window and efficiency, 4 targets for either SaKKH-
ABE or VQR-ABE were tested in HEK293 cells. Deep
sequencing data showed that both of the ABEs actively
generated A>G conversions in cells (Fig. 2B and 2C). The
editing efficiencies were up to ∼50% of both SaKKH-ABE
and VQR-ABE variants in certain position (Fig. 2B and 2C).
We noticed that the editing window of SaKKH-ABE was
expanded (position A3–A14 on EMX1 site 2) compared to
ABE. Our preliminary data also suggested that the highly
active position of SaKKH-ABE in the target was A8–A13

which was closer to the PAM sequence compared to ABE.
To test whether these two ABEs function in mouse

embryos, we injected mRNA of ABE variants with individual
sgRNAs. After microinjection of SaKKH-ABE mRNA and
sgRNA, 16% (3 out of 19) of the mice carried a single
mutation in the Otc locus with an editing rate ranging from
30%–54% in single founders as determined by deep
sequencing (Fig. 2D and 2F). For VQR-ABE, we also directly
injected VQR-ABE mRNA and sgRNA targeting Hbb-bs into
mouse embryos. The editing efficiency was 20% (6 out of
30) at the Hbb-bs locus with the A>G conversion efficiency
ranging from 2%–52% as determined by deep sequencing
(Fig. 2E and 2F). These data suggest that expansion of the
ABE editing scope through fusion with Cas9 variants is
efficient in both cell lines and mouse embryos.

To evaluate the off-target effects of this ABE, we predicted
the potential off-target sites of sgRNA targeting the Fah stop
codon based on sequence similarity through the on-line
target prediction program (http://crispr.mit.edu/). 20 predicted
off-target sites of 3 highly edited founders for each sgRNA

b Figure 1. ABE induces efficient A>G conversion in mouse

and rat embryos. (A) A schematic view of the ABE7.10 vector

used as the template for ABE mRNA transcription. (B) A

schematic view of the target site at the Fah stop codon. Target

sequence is underlined. PAM sequence is labeled in blue. Stop

codon is labeled in green. Arrow head indicates the targeted

thymine. Base substitutions are labeled in red. Allele frequen-

cies are listed to the right. (C) Sanger sequencing chro-

matograms from the WT and F0–F32 founder. T>C conversion

is indicated by the red arrow. (D) IHC staining of the liver tissue

sections from WT and F0–F32 founder by anti-Fah antibody.

Scale bar, 100 μm. (E) The editing efficiencies at three different

target sites with chemically modified crRNA/tracrRNAs or

unmodified sgRNAs. The numbers indicate the number of pups

generated. (F) A schematic view of the target site in exon 13 of

the rat Gaa gene and deep sequencing results from the

genomic DNA of the mutant founders. PAM sequence is labeled

in blue. Target sequence is underlined with codon 644, 645 and

646 indicated by their amino acid. Base substitutions are

labeled in red. Allele frequencies are listed to the right.

(G) Sanger sequencing chromatograms from the genomic

DNA of WT and two mutant F0 founders. Double peak signals

caused by A>G conversions are indicated by red arrows.

Codon 645 and 646 of WT and mutant alleles are underlined.

(H) PAS staining of heart and Tibialis anterior cryo-sections

from 3 week old WT, I646V and D645G/I646V homozygotes.

Scale bar, 20 μm.
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were selected, and PCR products were amplified and sub-
jected to deep sequencing. We found that the frequency of
off-target mutation was below 0.2% (due to the threshold of
Hi-Tom method) which is similar to wild-type controls by
analyzing a total of 50,000–100,000 reads/site via the web
site (http://www.hi-tom.net/hi-tom/), demonstrating that ABE
might have very few or no off-target effects at these tested
sites (Fig. S6). It suggests that ABE is an accurate base
editing tools for generation of mouse and rat point mutant
strains.

In summary, we demonstrated that ABE and its variants
efficiently generate site-specific A:T>G:C conversions in cell
lines, mouse and rat embryos. We found that the editing
window of ABE7.10 in rodent embryos is from position 2–9.
To the best of our knowledge, this is the first report to
demonstrate efficient generation of point mutations through
base editors in rats. The SaKKH-ABE and VQR-ABE system
will be important tools to diversify the range of ABE targets in
the genome. As A>G conversion may correct 48% of the
pathogenic human SNPs (Gaudelli et al., 2017), in combi-
nation with BEs, these base editing systems have promising
potential not only for generation of disease models, but more
importantly for therapy of hereditary diseases caused by
point substitutions.
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