欧美成一级-欧美成在人线a免费-欧美传媒影-欧美大逼逼-欧美大成色www永久网站婷-欧美大胆a级视频

新聞動態
企業新聞
媒體報道
發表文獻

Published PAPER發表文獻

  • 2024

    Xue N., Hong D., Zhang D., et al. Engineering IscB to develop highly efficient miniature editing tools in mammalian cells and embryos. Molecular Cell (2024).

  • 2024

    Wang X., Wu X., Tan B., et al. Allogeneic CD19-targeted CAR-T therapy in severe myositis and systemic sclerosis achieved durable remission and reversed extensive fibrotic damages. Cell (2024).

  • 2024

    Yang L., Huo Y., Wang M., et al. Engineering APOBEC3A deaminase for highly accurate and efficient base editing. Nature Chemical Biology (2024).

  • 2023

    Zhang, N., Liu, X., Qin, J., et al. LIGHT/TNFSF14 promotes CAR-T cell trafficking and cytotoxicity through reversing immunosuppressive tumor microenvironment. Molecular Therapy (2023).

  • 2023

    Chen, L., Hong, M., Luan, C., et al. Adenine transversion editors enable precise, efficient A·T-to-C?G base editing in mammalian cells and embryos. Nature Biotechnology (2023).

  • 2022

    Chen, L., Zhu, B., Ru, G., et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nature Biotechnology (2022).

  • 2022

    Chen, L., Zhang, S., Xue, N., et al. Engineering a precise adenine base editor with minimal bystander editing. Nature Chemical Biology (2022).

  • 2022

    Zhang, J., Hu, Y., Yang, J., et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature (2022).

    Recently, chimeric antigen receptor (CAR)-T cell therapy has shown great promise in treating haematological malignancies1–7 . However, CAR-T cell therapy currently has several limitations8–12. Here we successfully developed a two-in-one approach to generate non-viral, gene-specifc targeted CAR-T cells through CRISPR–Cas9. Using the optimized protocol, we demonstrated feasibility in a preclinical study by inserting an anti-CD19 CAR cassette into the AAVS1 safe-harbour locus. Furthermore, an innovative type of anti-CD19 CAR-T cell with PD1 integration was developed and showed superior ability to eradicate tumour cells in xenograft models. In adoptive therapy for relapsed/refractory aggressive B cell non-Hodgkin lymphoma (ClinicalTrials.gov, NCT04213469), we observed a high rate (87.5%) of complete remission and durable responses without serious adverse events in eight patients. Notably, these enhanced CAR-T cells were efective even at a low infusion dose and with a low percentage of CAR+ cells. Single-cell analysis showed that the electroporation method resulted in a high percentage of memory T cells in infusion products, and PD1 interference enhanced anti-tumour immune functions, further validating the advantages of non-viral, PD1-integrated CAR-T cells. Collectively, our results demonstrate the high safety and efcacy of non-viral, gene-specifc integrated CAR-T cells, thus providing an innovative technology for CAR-T cell therapy.
  • 2022

    Fu, B., Liao, J., Chen, S. et al. CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nature Medicine (2022).

    Gene editing to disrupt the GATA1-binding site at the +58 BCL11A erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by HBB gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2 trial (NCT04211480) evaluating safety and efficacy of gene editing therapy in children with blood transfusion-dependent β-thalassemia (TDT). We transplanted BCL11A enhancer-edited, autologous, hematopoietic stem and progenitor cells into two children, one carrying the β0/β0 genotype, classified as the most severe type of TDT. Primary endpoints included engraftment, overall survival and incidence of adverse events (AEs). Both patients were clinically well with multilineage engraftment, and all AEs to date were considered unrelated to gene editing and resolved after treatment. Secondary endpoints included achieving transfusion independence, editing rate in bone marrow cells and change in hemoglobin (Hb) concentration. Both patients achieved transfusion independence for >18?months after treatment, and their Hb increased from 8.2 and 10.8?g?dl?1 at screening to 15.0 and 14.0?g?dl?1 at the last visit, respectively, with 85.46% and 89.48% editing persistence in bone marrow cells. Exploratory analysis of single-cell transcriptome and indel patterns in edited peripheral blood mononuclear cells showed no notable side effects of the therapy.
  • 2020

    Zhang, X., Zhu, B., Chen, L.?et al.?Dual base editor catalyzes both cytosine and adenine base conversions in human cells.?Nature Biotechnology (2020).

    Although base editors are useful tools for precise genome editing, current base editors can only convert either adenines or cytosines. We developed a dual adenine and cytosine base editor (A&C-BEmax) by fusing both deaminases with a Cas9 nickase to achieve C-to-T and A-to-G conversions at the same target site. Compared to single base editors, A&C-BEmax’s activity on adenines is slightly reduced, whereas activity on cytosines is higher and RNA off-target activity is substan- tially decreased.
  • 2020

    Zhang X., Chen L., Zhu B., et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nature Cell Biology (2020).

    Cytidine base editors are powerful genetic tools that catalyse cytidine to thymidine conversion at specific genomic loci, and further improvement of the editing range and efficiency is critical for their broader applications. Through insertion of a non-sequence-specific single-stranded DNA-binding domain from Rad51 protein between Cas9 nickase and the deaminases, serial hyper cytidine base editors were generated with substantially increased activity and an expanded editing window towards the protospacer adjacent motif in both cell lines and mouse embryos. Additionally, hyeA3A-BE4max selectively cata- lysed cytidine conversion in TC motifs with a broader editing range and much higher activity (up to 257-fold) compared with eA3A-BE4max. Moreover, hyeA3A-BE4max specifically generated a C-to-T conversion without inducing bystander mutations in the haemoglobin gamma gene promoter to mimic a naturally occurring genetic variant for amelioration of β-haemoglobinopathy, suggesting the therapeutic potential of the improved base editors.
  • 2020

    Zeng J, Wu Y, Ren C, Bauer DE, et al. Therapeutic base editing of human hematopoietic stem cells. Nature Medicine, 2020.

    Base editing by nucleotide deaminases linked to programmable DNA-binding proteins represents a promising approach to permanently remedy blood disorders, although its application in engrafting hematopoietic stem cells (HSCs) remains unexplored. Here we purified A3A (N57Q)-BE3 protein for ribonucleoprotein (RNP) electroporation of human peripheral blood (PB) mobilized CD34+ hematopoietic stem and progenitor cells (HSPCs). We observed frequent on-target cytosine base
請輸入您想查 |
返回頂部
主站蜘蛛池模板: 久久精品免费一区二区三区 | 久久精品成人欧美大 | 国产亚洲精久久久久久无码 | 在线观看亚洲精品专区 | 国产美女精品免费视频观看 | 国产精品后入内射日本在线观看 | 国产日韩新片无码一区 | 亚洲国产精品线在线观看 | 国产日韩在线观看视频 | 日韩ww深夜网站免费看 | 国产黄色视频网站 | 精品露脸 | 久久国产免费 | 国产91精品久久 | 亚洲国产精品第一区二区三区 | 国产一级特大黄毛片 | 专门看美女福利视频的网站 | 国产日韩无码精品一区二区三区 | 精品乱人伦一区二 | 欧美激情国产精品视频一区二区 | 欧洲无线码免费一区 | 亚洲毛片| 国产99久久九九精品免费 | 国产亚洲精品a在线观看app | 麻豆91成人国产在线观看 | 精品国精品国产自在久国产应用 | 国产成人无码a区在线播放 国产成人无码h在线观看网站 | 国产91精品看黄网站在线观看 | 精品精品久久盛宴 | 黄色大全免费在线观看 | 中文在线免费视频 | 久久毛片免费精品无码视频 | 欧美日韩国产在线高清视频 | 91桃色无码国产在线观看二区 | 无码国产激情在线观看 | 亚洲午夜福利精品无码不卡 | 国产精品永久久久久 | 91大神在线免费观看 | 国产水手服19禁在线视频网站 | 日本免费一区高清观看 | 欧美日韩精品久久免费 |